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Mikoláš Janota1,2 and Martin Suda2

1 IST/INESC-ID,
University of Lisbon, Portugal
mikolas.janota@gmail.com

2 Czech Technical University in Prague, Czech Republic,
martin.suda@cvut.cz

Abstract

Finite model finders represent a powerful tool for deciding problems with the finite
model property, such as the Bernays-Schönfinkel fragment (EPR). Further, finite model
finders provide useful information for counter-satisfiable conjectures. The paper investi-
gates several novel techniques in a finite model-finder based on the translation to SAT,
referred to as the MACE-style approach. The approach we propose is driven by coun-
terexample abstraction refinement (CEGAR), which has proven to be a powerful tool in
the context of quantifiers in satisfiability modulo theories (SMT) and quantified Boolean
formulas (QBF).

One weakness of CEGAR-based approaches is that certain amount of luck is required in
order to guess the right model, because the solver always operates on incomplete informa-
tion about the formula. To tackle this issue, we propose to enhance the model finder with a
machine learning algorithm to improve the likelihood that the right model is encountered.
The implemented prototype based on the presented ideas shows highly promising results.

1 Introduction

Finite model finding plays an important role in a number of areas of automated reasoning. Users
are often interested in models rather than in proving a theorem [19]. But even if the objective is
to prove a theorem, models serve as counterexamples in the case of incorrect assumptions, which
is equally important in mathematics [3] just as in other areas, such as software verification. Some
high-level automated theorem proving systems use validity of formulas in many finite models
as a semantic feature for lemma selection learning [33].

In certain fragments of first-order logic, finite model finding provides a complete decision
procedure. A prominent example being the Bernays-Schönfinkel fragment (EPR), which itself
is a generalization of other well-known fragments such as quantified Boolean formulas (QBF)
or Dependency QBFs (DQBF), cf. [21].

The state-of-the-art finite model finding enjoys a number of different paradigms. The
MACE/Paradox-style translates the whole first-order logic formula into a propositional one
for each considered size of the universe [6, 19]. Universal variables are eliminated by expanding
each universal quantifier into conjuncts, i.e. by exhaustive grounding. Functions are repre-
sented by the introduction of a growing number of Boolean variables corresponding to the
relation defining the function.

Constraint satisfaction-based model finders, e.g. the SEM model finder [35], rely on ded-
icated symmetry and propagation. In the context of SMT, Reynolds et al. do not translate
to SAT, but instantiate quantifiers lazily and rely on the theory of equality with uninterpreted
functions (EUF) [27, 26]. In order to ensure that the resulting model has the desired cardi-
nality, a model returned by EUF is shrunk by “gluing” together the calculated equivalence
classes. Vakili and Day also rely on EUF but add additional constraints to achieve the right
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cardinality [34]. Similar constraints are used by Baumgartner et al. in function-free clause logic
implemented in the Darwin system [2].

The MACE-style SAT-based approach has one clear advantage over the aforementioned
ones: the cardinality of the universe does not need to be enforced by special constraints or
methods. Indeed, the cardinality is implicitly captured by the encoding since SAT solvers work
in a finite domain. However, the MACE-style approach blows up in space for large number of
universal variables. We aim to circumvent this issue by instantiating variables lazily (similarly
as in SMT). However, this brings about a different issue. A candidate model is always calculated
from partial information and therefore the model finder needs to be lucky to hit the right one.
We aim to tackle this by the introduction of machine learning into the model finder. Hence,
the two main contributions of the paper can be summarized as follows.

1. A method for finite model finding with CEGAR-based quantifier instantiation an-
chored in translation to SAT.

2. An enhancement of the model finder with machine learning with the aim of more
informed calculation of the candidate models.

The rest of the paper is organized as follows. Section 2 introduces concepts and notations
used throughout the paper. Section 3 describes the model-finding algorithm. Section 5 reports
on experimental results, and finally, Section 6 concludes and outlines future work.

2 Preliminaries

Standard notation and concepts from first-order logic are assumed. Throughout the paper we
assume a fixed signature Σ consisting of a set of function and predicate symbols. Each function
and predicate symbol f is assigned a unique arity, which is a non-negative integer. Function
symbols with 0-arity are called constants. A function or predicate with the arity n is called
n-ary.

The binary predicate symbol ' represents equality. Atoms, terms, literals, and clauses are
defined as usual. The letters s, t, . . . are used to denote terms; the letters F, α, φ, ψ to denote
formulas; variables are denoted as x, x1, . . . and a vector of variables as ~x. Predicate symbols
are denoted as p, p1, . . . and function symbols are denoted as f, f1, . . . .

A formula with no quantifiers and no variables is called ground. A variable x in a formula
(∀x)φ is called bound or universally quantified. A variable that is not bound is called free.
A formula is in prenex form if it is in the form (Q1x1 . . . Qnxn)(φ) where Qi ∈ {∀,∃} and
φ does not contain any quantifiers. We assume that existential quantifiers are eliminated by
Skolemization. A formula with no free variables is called closed.

A Σ-structure M consists of a non-empty universe U and an interpretation I for variables
and symbols in Σ. For an n-ary function f , the interpretation of f is denoted as I(f) and it is
a total function from Un to U . For an n-ary predicate p, the interpretation of p is denoted as
I(p) and it is a subset of Un. For a variable x, I(x) is an element of U . Satisfiability is defined
as usual. A structure is called a model of a formula F if it satisfies F . A model is called finite
if its universe is finite.

Note that since we are primarily interested in satisfiability, free variables and constants can
be treated interchangeably for all practical purposes.

The Bernays-Schönfinkel fragment of first-order logic consists in the formulas (∃~y)(∀~x)(φ),
where φ does not contain function symbols or any further quantification. The class is well-
known to be decidable. In fact, its Herbrand universe is finite and it is therefore often referred
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Algorithm 1: Finite model finding, general structure (possibly non-terminating)

input : First-order logic formula F
output: A model of F or ⊥, if F proven unsatisfiable

1 for k ∈ 1..UniverseLimit(F ) do
2 I ← FindModelk(F )
3 if I 6= ⊥ then
4 return I // model found

5 return ⊥ // unsatisfiable formula

to as effectively propositional logic (EPR). Note that a formula F in EPR has a model if and
only if it has a finite model. We remark that the complexity class of EPR is higher than SAT,
in fact it is NEXP-TIME complete [18] and that it remains decidable with equality as well [21].

2.1 Machine Learning

Some basic notions from Machine Learning are needed. In general, by machine learning we
understand the automated detection of meaningful patterns in data [29]. In particular, we
are interested in the classification task where each vector determining values of the features is
assigned a category. From a mathematical point of view, the objective is to devise a function
that is given values of the features as arguments and returns a category.

Consider a set of features F1, . . . ,Fn with respective domains D1, . . . , Dn and a domain of
the classification category D. We define a machine learning problem by a training sample, which
is a set of labeled tuples (v1, . . . , vn) → v, where vi ∈ Di are values of the individual features
and v is a value from the category domain D. The output of machine learning problem is a
total function f from D1× · · · ×Dn to D. The function f should be close to the labeling given
by the training sample and typically is represented in some specific space. In particular, we will
be using decision trees [23]. For further details, we refer the reader to standard literature [28,
20, 29].

3 Algorithm

The goal is to solve a closed formula F of the form (∀~x)φ, where φ is quantifier free. Algorithm 1
outlines the general structure of the algorithm. It iterates the universe size k from 1 to a limit
dependent on the given formula. Whenever a model is found for some k, the model is returned
and the formula is thus shown satisfiable. If the formula F is in EPR, UniverseLimit(F ) is set
as the number of constants appearing in F .1 If F is ground, UniverseLimit(F ) is set as the
number of terms in F . It is chosen +∞ in all other cases. If a model is not found within the
limit UniverseLimit(F ), the formula F is proven unsatisfiable. In the general case, however,
when UniverseLimit(F ) = +∞, the algorithm may not terminate, which is inevitable due
to the undecidability of the problem. Section 3.4 proposes a technique that enables stopping
before reaching the limit.

One could consider a different strategy for exploring the values for k. However, if a small
model exists, it is likely to be easier to calculate than a larger one. Note that in order to
guarantee soundness, all the model sizes need to be considered, even in the case of EPR. For

1Additional preprocessing sometimes enables reducing this number; see Section 3.3.
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Algorithm 2: FindModelk with SAT-based CEGAR

input : F = (∀~x)φ, k ∈ N+

output: Model I of (∀~x)φ of size k, if such exists, ⊥ otherwise

1 α← true
2 while true do
3 τ ← solvek(α) // calculate model of α
4 if τ = ⊥ then
5 return ⊥ // F has no model size k

6 I ← complete(τ) // candidate model of size k
7 µ← solvek(¬φ[I]) // calculate counterexample to I
8 if µ = ⊥ then
9 return I // I is a model of F

10 α← α ∧ φ[µ] // strengthen α

instance, for F = (∀x)(c1 ' x ∧ c2 ' x), we obtain the limit UniverseLimit(F ) = 2 but the
formula only has models of size 1.

In the MACE-like approach, as implemented in Paradox or Vampire’s finite model finder,
a model of a given size k is sought by translating the whole problem into a propositional
representation and applying a SAT solver [19, 6, 24]. However, the translation to a propositional
representation in general suffers from exponential explosion. Indeed, potentially, each universal
variable gets expanded into k different constants. Hence, such translation is bound to explode
for problems with large domains and large number of universal variables. Here we propose to
generalize the MACE-style approach using a lazy grounding.

3.1 Finite Model Finding with CEGAR

The approach proposed here is anchored in counterexample guided abstraction refinement (CE-
GAR) and is summarized in Algorithm 2. For a given universe size k, Algorithm 2 runs a
CEGAR loop. Throughout the course of the algorithm, the formula α represents a conjunction
of some instantiations of the quantifier (∀~x). The formula α is therefore always weaker than
the given F = (∀~x)φ. If α has no model of size k, the formula F also has no model of size k
and the loop stops. If α has a model of size k, this model is used as a candidate model for F .
Conceptually, this happens in two separate steps. Since α is ground, any model τ of α is only
relevant on the ground terms that appear in α. Hence, τ needs to be completed into an inter-
pretation I of F . In terms of the counterexample guided abstraction refinement framework, the
formula α is an abstraction of the original formula F and the individual instantiations are the
refinement steps. Let us now discuss the details of the individual components of the algorithm.

Algorithm 2 hinges on the procedure solvek(ψ), which calculates a model for a ground
formula ψ, if it is satisfiable; it returns ⊥ otherwise. The procedure solvek is implemented by
converting to SAT by standard means. The details of the implementation are discussed later
on (Section 4.2).

In the following presentation we assume that the procedure solvek accepts the following lan-
guage, capturing ground formulas of first-order logic with some additional interpreted functions
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(readily translatable to SAT).

F ::= p(term∗) | F ∨ F | F ∧ F | ¬F | term 'k term | term ≤k term (1)

term ::= ?i | f(term∗) | maxk(term, term) | term +k 1 | ITE(F, term, term) (2)

The interpreted constant ?i for i ∈ 1..k is interpreted as the i-th element of the universe.
Hence, we assume that the universe is always of the form {?1, . . . ?k}, which also gives a natural
ordering of the elements. The binary operators 'k and ≤k enable comparing the elements of
the universe. The operations maxk and ITE (if-then-else) have the expected semantics. The
operation t+k 1 gives the element of the universe that immediately follows t, if t 6= ?k and it is
undefined otherwise. When calling solvek, the predicate ', is treated as 'k.

Since solvek(ψ) is essentially just a wrapper around a SAT solver, it returns a model of ψ
in the form of an assignment to the ground terms appearing in ψ. If ψ does not have a model,
solvek returns ⊥. The returned assignment τ assigns each term in α a value from {?1, . . . ?k}
and each atom to a value from {true, false}.

After we obtain a model τ of α, a crucial step is to complete it into an interpretation of F .
The function complete serves for this purpose. Since we need to be able to explicitly reason on
the obtained interpretations, we assume that any model returned by complete is representable
in the input language of solvek. Hence, we treat an interpretation and its syntactic repre-
sentation interchangeably. Conceptually, we may see an interpretation as an assignment from
symbols to lambda functions in the language above. So for instance an interpretation of some
binary predicate {(?0, ?0), (?1, ?1)} corresponds to λxy. (x 'k ?0∧y 'k ?0)∨(x 'k ?1∧y 'k ?1).

There are straightforward ways of calculating the completion of τ into I. For an n-nary
predicate p(x1, . . . , xn), collect all atoms a, where p appears and are assigned to true by τ into
a set AT

p . Construct the following interpretation∨
p(t1,...,tn)∈AT

p

(
x1 'k τ(t1) ∧ · · · ∧ 'k τ(tn)

)
(3)

Like so, all points of p that are not assigned by τ are assigned to false in I. Alternatively, it
is possible to consider to set p to false only in the points where τ sets it to false, i.e., assigning
unassigned points to true. Functions can be completed in analogous way by picking some default
value, e.g. the value ?1 (recall that the universe is always nonempty). Later on we discuss more
informed ways of computing the completion (Section 3.2).

The representability of interpretations in the language of solvek is crucial for checking if
the candidate interpretation I is a model of F . To model-check I for (∀~x)φ, we look for an
assignment to the variables ~x that would invalidate φ under I. This is done by negating φ,
replacing each occurrence of a symbol by its interpretation in I, and calling solvek (line 7,
Algorithm 2).

Example 1. Consider F = (∀x)(p(x) ↔ (x ' c) ∧ c 6' d) and universe size k = 2. A possible
run of Algorithm 2 is as follows.

1. First the interpretation is chosen arbitrarily as p always true:
τ1 = {}, I1 = {c 7→ ?1, d 7→ ?2, p 7→ λx. true}.

2. The element ?2 represents a counterexample to I1:
µ1 = {x 7→ ?2}, α1 = c 6' d ∧ (p(?2)↔ ?2 ' c)

3. The second candidate interpretation sets p everywhere false:
τ2 = {p(?2) 7→ false}, I2 = {c 7→ ?1, d 7→ ?2, p 7→ λx. false}

5
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4. Now ?1 serves as a counterexample to I2:
µ2 = {x 7→ ?1}, α2 = c 6' d ∧ (p(?2)↔ ?2 ' c) ∧ (p(?1)↔ ?1 ' c)

5. Finally, ∀x is fully grounded and the right interpretation is calculated:
τ2 = {}, I2 = {c 7→ ?1, d 7→ ?2, p 7→ λx. x ' ?1}.

3.2 Learning Models

Completing a model of α into an interpretation of F is a source of nondeterminism of the
CEGAR approach. In fact, the CEGAR approach seems to be going against itself in some
sense. The premise of the CEGAR approach is that α is small, i.e. significantly smaller than
the exponential worst-case. However, at the same time, the smaller the α, the less information
is obtained from models of α.

More specifically, for a universe of size k, a full truth table for an n-ary predicate contains
kn rows (giving thus 2k

n

possible interpretations). A small α will fill in values of only few rows
of this table. This effect is magnified by the existence of multiple predicates and functions.

We propose to use machine learning in this context. The model of α serves as the training
sample and a learning algorithm serves as the completion method.

More specifically, consider an n-ary predicate p and a model τ of α. Collect all atoms in α
where p is the top-level predicate into a set Ap. Construct the following training sample

{(τ(t1), . . . , τ(tn))→ τ(p(t1, . . . , tn)) for p(t1, . . . , tn) ∈ Ap} (4)

Recall that τ assigns to each term ti a value from the universe {?1, . . . , ?k} and it assigns each
atom p(t1, . . . , tn) one of the values true, false. Hence, the training sample represents a typical
classifier with two categories, where tuples from {?1, . . . , ?k}n are classified as either true or
false. Since models of α must observe congruence on functions and predicates, the training
sample never labels the same tuple with two different values.

In the next step, apply some machine learning algorithm on the training sample. Finally,
encode the function obtained from learning into the language accepted by solvek. The rationale
for functions is analogous. To obtain a full completion of τ , into an interpretation I, repeat
this process for every predicate and function symbol separately.

3.2.1 Learning with Decision Trees

In the current implementation of this approach we proceed as follows. For an n-ary predicate
p(arg1, . . . , argn) construct a decision tree [23] and consider the set of branches that lead to
true and define the interpretation of the predicate as a disjunction over these branches.

For the concrete form of the decision tree, we consider two alternatives. In the first alter-
native, each node of the decision tree is labeled by the argument argi on which to decide and
then the edges from this node to its children are labeled with all the possible values of argi.
Hence, each node in the tree has exactly k children.

In the second alternative for a decision tree, each node is labeled by a predicate argi ≤ ?j
and has two children: one for inputs where argi ≤ ?j and one for inputs where argi 6≤ ?j .
Note that argi may appear multiple times on a single branch in this alternative, whereas this
is not the case in the first alternative. In both alternatives, the decision tree is learned by the
standard algorithm ID3 [23]. The following example demonstrates the process.

Example 2. Let F = (∀x1, . . . , xn)(p(x1, . . . , xn) ↔ (x1 ' c)) and k = 2. Instantiate by
(?1, ?1, . . . , ?1) and (?2, ?1, . . . , ?1) yielding the following α

(p(?1, ?1, . . . , ?1)↔ ?1 'k c) ∧ (p(?2, ?1, . . . , ?1)↔ ?2 'k c).

6
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Consider a model of α, τ = {c 7→ ?2, p(?1, ?1, . . . , ?1) 7→ false, p(?2, ?1, . . . , ?1) 7→ true}.
Completing p by the straightforward disjunction operation (see (3)) only gives p as

{(?2, ?1, . . . , ?1)}.
To use machine learning, we consider the features arg1, . . . , argn corresponding to the ar-

guments of the predicate p. Interpreting the assignment α as a training sample yields the
following: {(?1, ?1, . . . , ?1) 7→ false, (?2, ?1, . . . , ?1) 7→ true}. Applying a learning algorithm on
this training sample use the following simple decision tree.

arg1

false

?1

true

?2

The decision tree identifies that the values of the predicate can be classified by looking only
at the first argument. Semantically, the tree corresponds to the branch a1 'k ?1 leading to
the label false and to the branch a1 'k ?2 leading to the label true. Finally, we get the in-
terpretation p = λa1, . . . , an. (a1 'k ?2). Alternatively, one can use the negative branches:
p = λa1, . . . , an. (a1 6'k ?1).

3.3 Symmetry Breaking

For symmetry breaking we follow the approach proposed by Claessen and Sörensson (Para-
dox) [6, Sec. 6]. However, the realization of the symmetries needs to be adapted to our setting.

Consider all the constants of F in some arbitrary order c1, . . . , cn. We wish to express that
the constants are allocated values consecutively from ?1, i.e., c1 = ?1 and ci = ?j only if there
exists i′ < i s.t. ci′ = ?j−1. This is ensured by adding two types of constraints. First we
express that ci is assigned an element in the range ?1, . . . , ?min(i,k) by adding the constraint

ci ≤k ?min(i,k). In particular, we get c1 ≤k ?1 or equivalently c1 'k ?1. Second, we ensure that

there are no “holes” in the assignments by adding the constraint ci+1 ≤ maxk(c1, .., ci) +k 1.

In the case of an EPR formula, we need only at most as many elements of the universe
as there are constants, i.e. n. Further, since the universe sizes are visited exhaustively (in an
increasing order), it is sound and complete to restrict solvek to look for solutions where the
constants use up all the elements of the universe. This is guaranteed by the additional constraint
maxk(c1, .., cn) 'k k. A special case is when n = k, where we simply add the equalities ci 'k ?i.

However, this constraint can be only applied in the case of EPR as in general first-order
logic, further elements of the universe may be needed as values for non-constant terms, e.g.
(∀x)(f(x) 6' x) requires universe size 2.

Just as in Paradox, before applying the symmetries, we partition all the constants into
equivalence classes so that constants from different classes “do not interact” [6, Sec. 7]. These
equivalence classes can be seen as inferred sorts. The symmetries above are applied to these
classes individually. The exception is the last symmetry, where we need to express that the
universe is used up by all the constants across all the classes. Taking into account these
equivalence classes also enables lowering the upper bound on the universe size that needs to be
explored in order to guarantee completeness. For EPR the upper bound UniverseLimit(F ) is
taken as the maximum of the sizes of these classes.

7
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3.4 Stopping Early

The top-level loop in Algorithm 1 explores the sizes of the universe from 1 to the limit
UniverseLimit(F ). In some cases, however, one may deduce that F is unsatisfiable earlier.
We propose a simple stopping criterion. Once α is shown unsatisfiable for some k, count the
number of terms occurring in it (these terms are guaranteed to be ground). If this number
is less or equal to k, the top-level for-loop can stop, i.e. it is not necessary to explore larger
universe sizes.

Example 3. Let F = f(c) ' c ∧ (∀x)(f(x) 6' x). Instantiate x with x 7→ ?1 and also consider
the symmetry breaker c ' ?1 yielding the following ground problem

c ' ?1 ∧ f(c) ' c ∧ f(?1) 6' ?1

The ground formula has the ground terms {c, ?1, f(c), f(?1)}. Consequently, it is sufficient to
stop for the universe size k = 4.

It is easy to observe that this stopping criterion is sound i.e., the criterion is applicable only
if F is unsatisfiable. Indeed, since α is ground and it contains at most m ≤ k terms, it must
be the case that if it has a model, it also has a model of size at most m. This means that if α
does not have a model of size at most k, it is unsatisfiable. Since α is weaker than F , it must
mean that F is also unsatisfiable.

3.5 Instantiation with Original Constants

Algorithm 2 always instantiates the vector of variables ~x with elements of the universe ?i. Since
we are concerned with finite models, this is clearly both sound and complete. However, it is
not necessarily advantageous. For instance, in ¬p(c) ∧ (∀x)p(x) instantiating x with c rather
than ?1 gives a more appropriate strengthening. To achieve such instantiations we proceed as
follows. For a considered candidate model I, and a counterexample µ such that µ(x) = ?i and
I(cj) = ?i for some x, cj , and i, we change µ to µ′ = µ[x 7→ cj ]. The operation is sound as
these instantiations are in fact instantiations with members of the Herbrand universe.

Using original constants for instantiations combined with the early-stop criterion (Sec-
tion 3.4) may lead to lowering the necessary universe size.

Example 4. Instantiating F = f(c) ' c ∧ (∀x)(f(f(x)) 6' x) with x 7→ c gives the ground
problem f(c) ' c ∧ f(f(c)) 6' c with the ground terms {c, f(f(c)), f(c)}. This makes the
universe size k = 3 sufficient to stop.

We remark that a similar technique was used by Ge and de Moura in SMT to obtain complete
instantiation for certain types of theories [12].

4 Implementation

4.1 Non-prenex Input

Algorithm 2 is easily adapted to operate on non-prenex input, similarly as in [14]. This is
practically useful in clausal inputs where the input is of the form (∀~x1)(C1) ∧ · · · ∧ (∀~xn)(Cn).
In such case, the implementation calculates a candidate model I as before and tests it against
all the individual conjuncts. Instantiation is then carried out based on the counterexamples
that were obtained from those conjuncts that are not satisfied by I. Hence, the model-checking

8
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routine, can be seen as a function returning a set of counterexamples rather than a single one. If
this set is empty, it means that the candidate interpretation is indeed a model. This operation
is characterized by the following equations.

check(ψ ∧ φ):= check(φ) ∪ check(ψ)

check(ψ ∨ φ):= let S1 = check(ψ), S2 = check(φ) in ∅ if (S1 = ∅ or S2 = ∅) else (S1 ∪ S2)

check((∀~x)ψ):= let τ = solvek(¬ψ[I]) in {(τ, ψ)} if (τ 6= ⊥) else ∅

In the case of conjunctions it would be possible to return only the failing conjunct, but that
appears to be overly conservative for typical FOL benchmarks.

4.2 Deciding Ground Formulas (solvek)

To implement a solver for ground formulas we use one of the standard translations to SAT.
Given a fixed size of the universe k, each ground term t is represented using the unary encoding
by k fresh Boolean variables. The unary representation enables straightforward encoding of the
interpreted predicates and functions ?i, 'k, ≤k, maxk, +k 1.

Congruence on terms predicates is guaranteed by Ackermann reduction (also known as
Ackermannization) [7, 1]. For each pair of terms s and t that appear in the formula and have
the same top-level function symbol f of arity n with the corresponding arguments a1, . . . , an
and b1, . . . , bn gives the constraint:( ∧

i∈1..n
ai 'k bi

)
→ (s 'k t) (5)

Congruence for predicates is ensured analogously by generating constraints for pairs of atoms
with the same top-level predicate. Even though the Ackermann reduction is polynomial, it can
produce large number of additional constraints. Hence, we add the Ackermann constraints (5)
in lazy fashion. Initially, the SAT solver is called on the formula with no Ackermann con-
straints generated. If it returns a satisfying assignment, it is checked whether the assignment
satisfies congruence. Ackermann constraints are added for those terms and atoms that do break
congruence (c.f. [9, 7, 4]).

5 Experimental Evaluation

The evaluated prototype is implemented in C++ and minisat 2.2 [10] is used as the backend
solver. All experiments were run on the StarExec compute cluster [30] with the time limit 600 s.
We refer to our prototype as QFM.

For the evaluation we have selected two sets of benchmarks both from the TPTP library [31].
The first group are the EPR problems (marked with the *EPR tags). The second group consists
in satisfiable and counter-satisfiable problems that are not contained in the first group.

The following state-of-the-art tools were included into the comparison. The automated FOL
prover iProver [17]; the SMT solver Z3 [8]; Vampire’s finite model finder [24], implemented
according to Paradox [6]; and the SMT solver CVC4 [27, 26]. CVC4 was tested in a finite-
model finding mode (switch --finite-model-find) [27, 26] and also on the EPR instances
with EPR quantifier instantiation (switch --quant-epr).

We have experimented with a number of configurations of QFM, not all are reported on in
detail. Symmetry breaking (Section 3.3) were helpful overall and therefore are always present.
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Solver #Solved #Solved SAT #Solved UNSAT
iProver 1265 403 862
Z3 1139 338 801
vampire-fm 1072 363 709
QFM+CEGAR+learn 1025 340 685
QFM+CEGAR 1019 334 685
cvc-fm 1014 328 686
QFM+expand 933 340 593
cvc-epr 879 185 694

Table 1: Summary for EPR instances.
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Figure 1: All solvers on EPR problems, with 739 not-trivial instances, with 549 trivial instances.

The technique of refining by original constants (Section 3.5) was helpful in the EPR instances,
but harmful on the non-EPR instances. We report on the results of QFM in 3 main configu-
rations:

• QFM+CEGAR, which corresponds to Algorithm 2 with straightforward model comple-
tion (see equation(3)),

• QFM+CEGAR+learning, which corresponds to Algorithm 2 where model completion is
calculated by machine learning (Section 2.1),

• QFM+expand, which corresponds to simply expanding all universal variables, i.e., to
calling solvek just once after exhaustive grounding.
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Figure 2: Comparing two alternatives of decision trees on EPR with 185 non-trivial and 873
trivial instances

5.1 EPR instances

Table 1 summarizes the results for all the solvers across the considered EPR instances. The
solver iProver dominates this benchmarks set in all categories, i.e. in total numbers, satis-
fiable, and unsatisfiable instances solved. Interestingly, while Z3 places 2nd in terms of to-
tal number of instances solved, it solves less satisfiable instances than both Vampire-FM and
QFM+CEGAR+learn, i.e. Z3’s strength lies in the unsatisfiable EPR problems. CVC4-EPR
and QFM+expand perform poorly in this benchmarks set.

Further insights can be gained from the cactus plot Figure 1. Recall that a cactus plot
contains a point (x, t) if for the given solver and CPU time t there exists x instances that
the solver solves within that time limit. For the sake of readability, in all the cactus plots
we exclude instances that were solved by all the considered solvers within the time limit of
60 seconds. From the cactus plot we can see that QFM+CEGAR+learn starts to give longer
times earlier than most of the solvers, but eventually it is able to overtake CVC4’s finite model
finder. The slower performance of QFM could be attributed to the fact that it is a much less
mature tool compared to the other ones.

Cactus plots Figure 2 and Figure 3 compare the two alternatives of decisions trees (see
Section 3.2.1). Here the alternative relying on splitting on the ≤ predicate is clearly favourable.
While the difference is relatively small, it is remarkable that already a small improvement in
the learning algorithm gives an improvement in the model finder.

Finally, the cactus plots Figure 4 and Figure 5 compare our prototype to itself. Overall,
expanding fully universally quantified variables from the get-go gives the worst performance and
learning is helpful. Interestingly, there is a big difference between satisfiable and unsatisfiable
instances. CEGAR outperforms full expansion by a factor of two on all the instances combined,
but if only satisfiable instances are taken into account, only CEGAR+learning outperforms the
expansion approach.
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Figure 3: Comparing two alternatives of decision trees on EPR satisfiable with 33 non-trivial
and 320 trivial instances
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Figure 4: QFM on EPR problems, 231 non-trivial solved instances, with 827 trivial
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Figure 5: Configurations of QFM on EPR satisfiable instances, 44 non-trivial solved instances,
with 309 trivial instances

Solver #Solved
vampire-fm 1282
QFM+CEGAR 1133
iProver 1093
cvc-fm 1023
QFM+expand 985
QFM+CEGAR+learning 816
Z3 632

Table 2: Summary for non-EPR instances.

5.2 Non-EPR instances

The overall results are summarized in Table 2 and in the cactus plot Figure 6. Interestingly, the
results are quite different from the EPR ones. Here Vampire’s finite model finder has the best
performance while Z3 performs poorly on these instances. QFM+CEGAR clearly outperforms
QFM with expansion. In fact, QFM+CEGAR places 2nd overall. However, learning for QFM
on these instances is harmful. It is harmful to the extent that it performs more poorly than the
full expansion approach. This suggests that the learning procedure we are using (Section 2.1)
works well in predicates, but does not when it comes to learning functions with larger ranges.

6 Summary and Future Work

In this paper we present an approach for finite model finding that is anchored in translation
to SAT, as in MACE and Paradox, but instantiates quantifiers lazily by relying on counterex-
ample guided abstraction refinement (CEGAR). Counterexample-driven instantiation has been
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Figure 6: All solvers on non-EPR instances, with 880 non-trivial and 440 trivial instances.

used in a number of contexts in recent years, mainly in SMT [12, 25, 11, 22], but also in
QBF [15, 13, 32]. In the context of certain theories, it has been shown that the procedure can
be refutationally complete [12]. Here we postulate that CEGAR-based (finite) model finders
suffer from a significant weakness in satisfiable problems. Since the abstraction of the formula
contains only a small portion of the information about the formula, the algorithm requires a
certain amount of luck to guess the right model. Purely statistically speaking, it is nearly
impossible.

To tackle this issue, we propose to enhance the model finder with a machine learning algo-
rithm whose purpose is to identify patterns that might emerge in the partial solution and that
will eventually bring the solver closer to the desired model.

The initial experiments on our prototype indicate that the model finder benefits both from
CEGAR and machine learning. However, the experiments also show several drawbacks in the
current prototype.

While in many cases our prototype already outperforms state-of-the-art CEGAR-based
SMT solvers (CVC4 and Z3), its overall performance is poorer than the original full-grounding
Paradox-style approach, as implemented in Vampire. It is not obvious why that is the case
as CEGAR outperforms our own implementation of exhaustive grounding. It is the subject of
future work to investigate more carefully where the difference is coming from—it might simply
be a more careful handling of the SAT solver or similar implementation related issues.

In terms of the learning approach, the experiments indicate that learning is helpful for
predicates, but harmful for functions. One explanation for this could be that the chosen form
of the hypothesis space is inadequate for learning functions. One solution here might be to
simply apply learning only on predicates, but some other techniques can be envisioned. For
instance, rather than learning a function by a single decision tree, use multiple ones. Or, use a
different structure than a decision tree. In general, the learned functions could be built from a
richer language than now. This opens a number of avenues for future work.

Last but not least, we plan to extend the current work for multi-sorted logic [5, 24] and
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incorporate more advanced preprocessing techniques, such as blocked-clause elimination [16].
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automated reasoning with semantic guidance. In Alessandro Armando, Peter Baumgartner, and
Gilles Dowek, editors, International Joint Conference on Automated Reasoning (IJCAR), volume
5195 of Lecture Notes in Computer Science, pages 441–456. Springer, 2008.

[34] Amirhossein Vakili and Nancy A. Day. Finite model finding using the logic of equality with
uninterpreted functions. In Formal Methods (FM), pages 677–693, 2016.

[35] Jian Zhang and Hantao Zhang. SEM: a system for enumerating models. In Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence, IJCAI, pages 298–303. Mor-
gan Kaufmann, 1995.

17


	Introduction
	Preliminaries
	Machine Learning

	Algorithm
	Finite Model Finding with CEGAR
	Learning Models
	Learning with Decision Trees

	Symmetry Breaking
	Stopping Early
	Instantiation with Original Constants

	Implementation
	Non-prenex Input
	Deciding Ground Formulas (solve-k)

	Experimental Evaluation
	EPR instances
	Non-EPR instances

	Summary and Future Work

